Material Big Data

Lanzados ppts informativos de tecnologías BigData: Hadoop, Hbase, Hive, Zookeeper...

Apuntate al Curso de PowerBI. Totalmente práctico, aprende los principales trucos con los mejores especialistas

Imprescindible para el mercado laboral actual. Con Certificado de realización!!

Pentaho Analytics. Un gran salto

Ya se ha lanzado Pentaho 8 y con grandes sorpresas. Descubre con nosotros las mejoras de la mejor suite Open BI

Aprende gratis Analytics OLAP sobre Pentaho

La solución open source para business intelligence y Big Data sobre Pentaho, no te lo pierdas!!

14 ene. 2018

Los 30 mejores proyectos de Machine Learning Open Source



Como sabéis, el Machine Learning es uno de los temas que más nos interesan en el Portal y, máxime, cuando gran parte de las tecnologías son Open Source. En esta entrada, os indicamos los 30 proyectos más interesantes en en este año.

Os dejamos también el material que publicamos con las claves del Machine Learning y una introducción

Ver también, VideoTutorial


No 1

FastText: Library for fast text representation and classification. [11786 stars on Github]. Courtesy of Facebook Research

……….. [ Muse: Multilingual Unsupervised or Supervised word Embeddings, based on Fast Text. 695 stars on Github]

No 2

Deep-photo-styletransfer: Code and data for paper “Deep Photo Style Transfer” [9747 stars on Github]. Courtesy of Fujun Luan, Ph.D. at Cornell University


No 3

The world’s simplest facial recognition api for Python and the command line [8672 stars on Github]. Courtesy of Adam Geitgey


No 4

Magenta: Music and Art Generation with Machine Intelligence [8113 stars on Github].


No 5

Sonnet: TensorFlow-based neural network library [5731 stars on Github]. Courtesy of Malcolm Reynolds at Deepmind


No 6

deeplearn.js: A hardware-accelerated machine intelligence library for the web [5462 stars on Github]. Courtesy of Nikhil Thorat at Google Brain


No 7

Fast Style Transfer in TensorFlow [4843 stars on Github]. Courtesy of Logan Engstrom at MIT


No 8

Pysc2: StarCraft II Learning Environment [3683 stars on Github]. Courtesy of Timo Ewalds at DeepMind


No 9

AirSim: Open source simulator based on Unreal Engine for autonomous vehicles from Microsoft AI & Research [3861 stars on Github]. Courtesy of Shital Shah at Microsoft


No 10

Facets: Visualizations for machine learning datasets [3371 stars on Github]. Courtesy of Google Brain


No 11

Style2Paints: AI colorization of images [3310 stars on Github].


No 12

Tensor2Tensor: A library for generalized sequence to sequence models — Google Research [3087 stars on Github]. Courtesy of Ryan Sepassi at Google Brain


No 13

Image-to-image translation in PyTorch (e.g. horse2zebra, edges2cats, and more) [2847 stars on Github]. Courtesy of Jun-Yan Zhu, Ph.D at Berkeley


No 14

Faiss: A library for efficient similarity search and clustering of dense vectors. [2629 stars on Github]. Courtesy of Facebook Research


No 15

Fashion-mnist: A MNIST-like fashion product database [2780 stars on Github]. Courtesy of Han Xiao, Research Scientist Zalando Tech


No 16

ParlAI: A framework for training and evaluating AI models on a variety of openly available dialog datasets [2578 stars on Github]. Courtesy of Alexander Miller at Facebook Research


No 17

Fairseq: Facebook AI Research Sequence-to-Sequence Toolkit [2571 stars on Github].


No 18

Pyro: Deep universal probabilistic programming with Python and PyTorch [2387 stars on Github]. Courtesy of Uber AI Labs


No 19

iGAN: Interactive Image Generation powered by GAN [2369 stars on Github].


No 20

Deep-image-prior: Image restoration with neural networks but without learning [2188 stars on Github]. Courtesy of Dmitry Ulyanov, Ph.D at Skoltech


No 21

Face_classification: Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV. [1967 stars on Github].


No 22

Speech-to-Text-WaveNet : End-to-end sentence level English speech recognition using DeepMind’s WaveNet and tensorflow [1961 stars on Github]. Courtesy of Namju Kim at Kakao Brain


No 23

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [1954 stars on Github]. Courtesy of Yunjey Choi at Korea University


No 24

Ml-agents: Unity Machine Learning Agents [1658 stars on Github]. Courtesy of Arthur Juliani, Deep Learning at Unity3D


No 25

DeepVideoAnalytics: A distributed visual search and visual data analytics platform [1494 stars on Github]. Courtesy of Akshay Bhat, Ph.D at Cornell University


No 26

OpenNMT: Open-Source Neural Machine Translation in Torch [1490 stars on Github].


No 27

Pix2pixHD: Synthesizing and manipulating 2048x1024 images with conditional GANs [1283 stars on Github]. Courtesy of Ming-Yu Liu at AI Research Scientist at Nvidia


No 28

Horovod: Distributed training framework for TensorFlow. [1188 stars on Github]. Courtesy of Uber Engineering


No 29

AI-Blocks: A powerful and intuitive WYSIWYG interface that allows anyone to create Machine Learning models [899 stars on Github].


No 30

Deep neural networks for voice conversion (voice style transfer) in Tensorflow [845 stars on Github]. Courtesy of Dabi Ahn, AI Research at Kakao Brain









Visto en: Medium.mybridge.com

2 comentarios:

pridesys dijo...

Thanks For Sharing Excellent Blog. Machine Learning is steadily moving away from abstractions and engaging more in business problem solving with support from AI and Deep Learning. With Big Data making its way back to mainstream business activities, now smart (ML) algorithms can simply use massive loads of both static and dynamic data to continuously learn and improve for enhanced performance. Pridesys IT Ltd

Unknown dijo...

Nice and good article. It is very useful for me to learn and understand easily. Thanks for sharing your valuable information and time. Please keep updating MicroStrategy Online Training